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Abstract 

Background  Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increas‑
ing worldwide. Although there is currently no completely curative treatment, helminthic therapy shows certain thera‑
peutic potential for UC. Many studies have found that Trichinella spiralis (T.s) has a protective effect on UC, but the spe‑
cific mechanism is still unclear.

Methods  Balb/c mice drank dextran sulfate sodium (DSS) to induce acute colitis and then were treated with T.s. 
In vitro experiments, the LPS combination with ATP was used to induce the pyroptosis model, followed by interven‑
tion with crude protein from T.s (T.s cp). Additionally, the pyroptosis agonist of NSC or the pyroptosis inhibitor vx-765 
was added to intervene to explore the role of pyroptosis in DSS-induced acute colitis. The degree of pyroptosis 
was evaluated by western blot, qPCR and IHC, etc., in vivo and in vitro.

Results  T.s intervention significantly inhibited NLRP3 inflammasome activation and GSDMD-mediated pyroptosis 
by downregulating the expression of pyroptosis-related signatures in vitro (cellular inflammatory model) and in vivo 
(DSS-induced UC mice model). Furthermore, blockade of GSDMD-mediated pyroptosis by the caspase-1 inhibitor 
vx-765 has a similar therapeutic effect on DSS-induced UC mice with T.s intervention, thus indicating that T.s interven‑
tion alleviated DSS-induced UC in mice by inhibiting GSDMD-mediated pyroptosis.

Conclusion  This study showed that T.s could alleviate the pathological severity UC via GSDMD-mediated pyroptosis, 
and it provides new insight into the mechanistic study and application of helminths in treating colitis.
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Background
Inflammatory bowel diseases (IBDs), including Crohn’s 
disease (CD) and ulcerative colitis (UC), are chronic 
and complex disorders characterized by uncontrolled 
pathogenic intestinal inflammation and intestinal tissue 
injury [1]. UC is characterized by long-lasting inflamma-
tion, originating in the rectum, and the inflammation is 
restricted to the mucosal layer of the intestine, resulting 
in ulceration and bloody stools [2]. The prevalence of UC 
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is increasing globally and occurs widely in people of all 
ages, and long-term UC patients have an increased risk of 
developing colorectal cancer [3].

As a kind of autonomic programmed cell death, pyrop-
tosis is closely related to UC [4]. Pyroptosis depends 
on NLRP3 inflammasome and activated caspase-1 [5]. 
As innate receptors of the intestinal mucosal immune 
system, nucleotide-binding oligomerization domain 
protein-like receptors of NLRP3 assemble into inflam-
masome complexes with apoptosis-associated speck-
like protein (ASC) and proinflammatory caspase-1. On 
the one hand, activated caspase-1 can cleave inactivated 
precursors of interleukin-1β (IL-1β) and interleukin-18 
(IL-18) into mature IL-1β and IL-18. On the other hand, 
activated caspase-1 also cleaves gasdermin D (GSDMD) 
into gasdermin-D N-terminal domain (GSDMD-N) 
and  forms pores in the cell membrane. Thus, the pro-
inflammatory cytokines IL-1β and IL-18 are released 
outside the cell through these pores and cause inflamma-
tion. Clinical studies have shown that the NLRP3 protein 
expression and proinflammatory cytokines of IL-1β were 
increased in the colon mucosa of most IBD patients [6], 
and the level of IL-1β in the colon mucosa was positively 
correlated with disease severity [7]. Most studies have 
shown that pyroptosis levels were significantly elevated 
in DSS-induced UC mice [8–14]; therefore, inhibition of 
pyroptosis may have a therapeutic potential for UC.

There have been several studies regarding the exploi-
tation of helminths to develop novel therapies for the 
treatment of autoimmune inflammatory diseases includ-
ing IBD and allergic diseases [15, 16]. Trichinella spiralis 
(T.s) and its derived proteins have been investigated for 
the treatment of many hypersensitivity disorders [17, 18]. 
Normally, Trichinella infection can be caused by inges-
tion of infected meat [19], and Trichinella muscle lar-
vae (ML) are released by digestion of gastric juice and 
develop into intestinal infectious larvae (IIL) in the intes-
tine. Subsequently, IIL invades the small intestinal epi-
thelium, where they undergo four metamorphoses and 
develop into adult worms (AW), which mate and produce 
neonatal larvae (NBL). NBL travel from the intestine to 
the striated muscle through blood and lymph, eventually 
developing into L1 stage larvae in muscle cells [20–22]. A 
number of helminth and helminth-derived products have 
been shown to have therapeutic effects on UC [16, 23–
26]. In addition, helminthic derivatives  TSO (Trichuris 
suis  ova) and  P28 glutathione-S-transferase (P28GST) 
have been shown to have a remission effect on colitis 
in clinical trials [27, 28]. In recent years, studies on the 
therapeutic mechanism of worms or their derivatives in 
UC suggest that worms or their derivatives can relieve 
inflammation in colitis by regulating the Th1/Th2/Th17 
immune response by downregulating proinflammatory 

cytokines IFN-γ, IL-6 and IL-17 and upregulating anti-
inflammatory cytokines IL-4, IL-10 and TGF-β [29–31]. 
Recent studies have found that the therapeutic effect 
of T.s also correlated with the polarization of M2 mac-
rophages [32], suggesting that the treatment mechanism 
of worm against colitis may be multifactorial. However, 
additional mechanisms by which T.s improves colitis 
have not been reported.

Given that T.s has a protective effect against DSS-
induced UC in mice and has potent anti-inflammatory 
activity, the present study aimed to examine whether 
therapeutic effect of T.s on colitis was related to the 
pyroptosis pathway. Our data provided new insights into 
the mechanisms for the therapeutic application of hel-
minths in the treatment of colitis.

Methods
Animals and grouping
SPF Balb/c mice weighing 18–22 g were purchased from 
the Experimental Animal Center at the School of Basic 
Medicine of Central South University and housed in 
a pathogen-free environment in the animal center. All 
experimental procedures were approved by the Commit-
tee of Animal Ethics of Central South University.

Acquisition of T. spiralis crude protein
Trichinella spiralis  (strain ISS 533) was maintained in 
KM mice. Muscle larvae were collected from infected 
mouse muscle by digestion of artificial gastric juice [33, 
34]; sedimentation with sterile PBS was repeated sev-
eral times, and the samples were resuspended in sterile 
PBS containing 1% penicillin–streptomycin. Then, low-
temperature grinding was carried out with a grinder, and 
the supernatant after centrifugation was T. spiralis crude 
protein (T.s cp).

Establishment of DSS‑induced colitis model and treatment
The study was divided into two stages: DSS-induced 
stage and treatment stage. Mice were assigned randomly 
to control (n = 5) and DSS-induced groups (n = 16). Coli-
tis was induced in the DSS group by the administration 
of 3.5% DSS (molecular weight: 36–50  kDa; MP Bio-
medicals, Irvine, CA, USA) for 7  days. Then, the DSS 
group mice were assigned to the UC model and treat-
ment groups, with eight animals per group. The treat-
ment groups were 300 administered  T.s larvae. At the 
end of the experiment, the mice were fasted for 24 h and 
killed, and the colons were collected. Colon lengths were 
recorded, and colon specimens were frozen in liquid 
nitrogen or immediately fixed in 4% paraformaldehyde 
for further analysis.
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Analysis of myeloperoxidase activity
Myeloperoxidase (MPO) reflects the function and 
activity of neutrophils in tissues. MPO levels were 
measured using an MPO ELISA kit (Nanjing Jiancheng 
Technology Co., Ltd., Nanjing, China) according to the 
manufacturer’s instructions.

Evaluation of colitis severity
The severity of colitis was evaluated based on body 
weight, colon length, and macroscopic and micro-
scopic observations of the stool and colon. The disease 
activity index (DAI) score was evaluated according 
to the method reported in previous studies [35]. The 
DAI assessment was determined by the scoring crite-
ria described in Additional file 2: Table S1. Colon sec-
tions were prepared and stained with hematoxylin and 
eosin (H&E) by Wuhan Saiweier Biological Technology 
Co., Ltd. (Wuhan, China), and the histology score was 
evaluated by two parameters of epithelial damage and 
infiltration extent according to the previous study [29]. 
All evaluations were performed blind.

RNA extraction and quantitative real‑time PCR (qRT‑PCR) 
assay
Total RNA from colonic tissues and cells was isolated 
with Trizol  (TransGen  Biotech, Beijing, China) and 
reverse transcribed using the reverse transcription 
kit (TransGen  Biotech, China). qPCR was performed 
using SYBR Green reagent (TransGen Biotech). Primer 
sequences are listed in Additional file 3: Table S2, and 
GAPDH was used as a reference. The quantitative 
PCR conditions were: 94 °C for 30 s, 40 cycles of 94 °C 
for 5  s, 60  °C for 15  s and 72  °C for 10  s. The relative 
expression level of each gene was calculated by the 
2−ΔΔCt method [36], and the experiment was repeated 
three times.

Western blot assay
Colon tissues and cells were homogenized in RIPA buffer 
(Beyotime Biotechnology, Shanghai, China) with a phos-
phatase inhibitor cocktail (Beyotime). Protein was sepa-
rated by SDS-PAGE (Beyotime) and transferred to PVDF 
membranes (Millipore) as previously reported [37]. 
Membranes were blocked with 5% skim milk solution 
for 2  h and incubated with the corresponding primary 
antibody at 4  °C overnight.  Then, the membranes were 
incubated with secondary antibody for 2 h at room tem-
perature.  The protein bands were visualized using ECL 
reagents. Antibodies used are listed in Additional file 4: 
Table S3. The relative band intensity was measured using 

Image J software and further used for statistical analysis 
(Additional files 2, 3).

Interventions with pyroptosis agonists and inhibitors
The pyroptosis agonist nigericin (NSC 292567) and inhib-
itor belnacasan (vx-765) were purchased from Selleck 
Chemicals, LLC (Houston, TX, USA). DSS was induced 
in the experimental group by the administration of 3.5% 
DSS (molecular weight: 36–50 kDa; MP Biomedicals) for 
7 days (n = 5), and the treatment group mice were given 
a dose of 50 mg/kg VX-765 (pyroptosis inhibitor) (n = 5), 
50  mg/kg NSC (pyroptosis agonist) (n = 5) and DMSO 
control (n = 5) for 5 days. At the end of the experiment, 
after fasting for 24 h, the mice were killed and the colons 
collected. Colon lengths were recorded, and colon speci-
mens were frozen in liquid nitrogen or immediately fixed 
in 4% paraformaldehyde for further analysis.

Cell culture
RAW264.7 and MODE-K cells were purchased from 
Whelab (Shanghai Yingwan Biological, Shanghai, China) 
and cultured in 5% CO2, 37 °C.

Induction of cell pyroptosis in vitro
Cells were seeded in six-well plates. After 24 h of culture, 
the cells were stimulated with 1  µg/ml LPS for 6  h and 
co-cultured with 5 mM ATP (or 40 µM NSC) for another 
2  h before collection. T.s crude protein (4  μg/ml) was 
added and then incubated for 30 min before adding ATP 
(or NSC).

Statistical analysis
GraphPad Prism 8 was used for statistical analyses. All 
results are presented as mean ± SD, and the differences 
between groups were analyzed using one-way ANOVA 
analysis. Statistics symbols used are as follows: *P < 0.05, 
**P < 0.01, ***P < 0.001.

Results
T.s intervention suppresses GSDMD‑mediated pyroptosis 
in DSS‑induced colitis mice
Compared with the control mice, the body weights of 
the mice treated with DSS were continuously decreased 
until 1 or 2 days after stopping DSS induction. After T.s 
administration, the body weights of the mice increased 
after aborting DSS induction (Fig.  1a). Colon length in 
the T.s groups was longer than that in the DSS group 
(Fig.  1b). During the experiment, symptoms of UC, 
such as diarrhea and hemafecia, were less severe in the 
T.s groups. Colon damage in the T.s groups was much 
less than that in the DSS group. In addition, the DAI 
score and histological damage were decreased in colitis 
mice after treatment with T.s (Fig. 1c). MPO levels were 
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measured to assess the effects of T.s on colonic epithelial 
damage and neutrophil infiltration.  The results showed 
that T.s treatment significantly reduced MPO activity in 
DSS-induced colitis mice (Fig. 1d). These data indicated 
that T.s intervention could relieve the clinical symptoms 
of DSS-induced colitis mice.

In addition, compared with the control group, the lev-
els of the inflammatory cytokines TNF-α and IL-6 were 
significantly increased in the DSS group. T.s treatment 
significantly reduced the levels of the proinflammatory 
cytokines and increased anti-inflammatory factors IL-4, 
IL-13, IL-10 and TGF-β (Additional file  1: Figure S1). 
Furthermore, our results showed that IL-22 and iNOS 
levels were significantly elevated in the DSS group (Addi-
tional file 1: Figure S1).

Pyroptosis has recently been verified as a critical cell 
death pathway in colitis, and caspase-1/GSDMD-medi-
ated pyroptosis is an inflammatory cell death process that 
has become a novel target for UC treatment [38]. In this 
study, we attempted to investigate the effect of T.s or T.s 
crude proteins on the pyroptosis pathway. The results 
showed that the mRNA expression levels of NLRP3, 
GSDMD and NF-κB were highly expressed in the colon 
tissues of DSS-induced colitis and significantly decreased 

in the T.s intervention groups. However, the relative 
mRNA expression of caspase-1 and IL-1β was not statis-
tically different between the DSS and T.s treatment group 
(Fig.  2a). Moreover, we also found that the correspond-
ing protein levels showed the same trend as mRNA, 
with decreased protein levels of NLRP3, caspase-1, cas-
pase-1 p10, GSDMD-N, IL-1β and IL-1β p17 in the T.s 
groups. In addition, the phosphorylation level of p65 
of the mouse colons in the T.s group was significantly 
decreased  as well (Fig.  2b–c). Next, the immunohisto-
chemical assay was conducted to validate the expression 
levels of pyroptosis indicators NLRP3 and GSDMD in the 
colon tissue, and the results showed that the expression 
levels in the T.s treatment group were significantly lower 
than those in the DSS group (Fig. 3). These results indi-
cated that T.s intervention could inhibit NLRP3 inflam-
masome activation and GSDMD-mediated pyroptosis in 
DSS-induced colitis mice.

T.s crude proteins treatment inhibits GSDMD‑mediated 
pyroptosis in macrophage inflammatory model 
of RAW264.7 cells
Clinical studies and animal model experiments have 
reported that NLRP3 inflammasome activation and 

Fig. 1  T.s intervention attenuated clinical symptoms in DSS-induced UC mice. a The body weights were recorded and analyzed. b Colonic length 
was measured and recorded. c Histopathological changes in colonic samples were examined by H&E staining (40 ×). Histology scores (right) 
in each group. d MPO activity detection. All the results are presented as mean ± SD, and statistics symbols used are: *P < 0.05, **P < 0.01, ***P < 0.005, 
****P < 0.001
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Fig. 2  T.s intervention downregulates the expression levels of pyroptosis-associated molecules in DSS-induced ulcerative colitis mice. a qPCR 
detection of the relative expression levels of NLRP3, caspase-1, GSDMD, IL-1β and NF-κB. b–c Total proteins were extracted; about 40 μg protein 
was added to each lane, and specific antibodies were used to detect the relative expression levels of NLRP3, caspase-1, caspase-1 p10, GSDMD, 
GSDMD-N, IL-1β and p17 and phosphorylated NF-κB (p65). All the results are presented as mean ± SD, and statistics symbols used are: *P < 0.05, 
**P < 0.01, ***P < 0.005, ****P < 0.001

Fig. 3  Immunohistochemical detection of NLRP3 a and GSDMD b in mouse colon tissues in DSS-induced ulcerative colitis mice
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GSDMD-mediated pyroptosis are closely related to IBD. 
A macrophage inflammatory model was used to verify 
the effect of T.s intervention on the pyroptosis-related 
pathway. The results showed that after treatment with T.s 
crude proteins, the mRNA expression levels of GSDMD, 
NLRP3, caspase-1 and NF-κB (Fig.  4a) were signifi-
cantly decreased in RAW264.7 cells induced by LPS and 
ATP. Furthermore, the protein levels of GSDMD-FL, 
GSDMD-N, NLRP3, caspase-1 p20, IL-1β, IL-1β p17 
and phosphorylated NF-κB (p65) were also significantly 
decreased in the T.s crude protein groups (Fig.  4b–c). 
These data indicated that T.s crude protein treatment 
could suppress NLRP3 inflammasome activation and 
GSDMD-mediated pyroptosis in a macrophage inflam-
matory model of RAW264.7 cells.

T.s crude proteins treatment inhibits GSDMD‑mediated 
pyroptosis in an intestinal epithelial cellular inflammatory 
model of MODE‑K cells
It has been reported that GSDMD are produced by gut 
mucosa intestinal epithelial cells (IECs) in colitis model 
mice, and a deficiency of GSDMD effectively reduced the 
severity of dextran sodium sulfate (DSS)-induced coli-
tis [39, 40]. Therefore, the mechanisms regulating IEC 
survival and death are critical for immune homeostasis 
and pathogenesis in intestinal inflammatory diseases.  A 
recent study showed that LPS also induced IL-1β and 
GSDMD expression in colonic IECs [41]. Our results 
showed that the protein levels of GSDMD-N, caspase-1 
p20, IL-1β and IL-1β p17 were decreased in the T.s crude 
protein groups in the intestinal epithelial cell line of 
MODE-K  cell-induced pyroptosis model. Phosphoryla-
tion levels of NF-κB(p65) protein in the T.s crude pro-
tein group were also significantly decreased (Fig. 5). The 
results demonstrated that T.s crude protein treatment 
could inhibit GSDMD-mediated pyroptosis by down-
regulating the expression of pyroptosis-related molecules 
in an intestinal epithelial cellular inflammatory model of 
MODE-K cells.

Blockade of caspase‑1/GSDMD‑mediated pyroptosis 
ameliorates DSS‑induced colitis in mice
Caspase-1 activation could mediate GSDMD cleavage 
and IL-1β secretion [5]. To further understand the role 
of pyroptosis in DSS-induced colitis, the inhibitor bel-
nacasan (vx-765) and pyroptosis agonist nigericin (NSC) 
were used to intervene the experimental mice. This 

showed that pyroptosis inhibitor vx-765 intervention 
improved the clinical symptoms of DSS-induced colitis 
mice with reduced weight loss (Fig. 6a), shortened colon 
length (Fig.  6b) and decreased severity of pathological 
sections (Fig. 6c). Similar to the therapeutic effect of T.s 
treatment, after vx-765 intervention, pro-inflammatory 
cytokine IL-6 in DSS-induced colitis mice was signifi-
cantly reduced, while anti-inflammatory cytokines such 
as IL-4, IL-10 and TGF-β were significantly increased 
(Fig.  6d), indicating blockade of caspase-1-mediated 
pyroptosis could balance the immune disorder of DSS-
induced colitis in mice.

Further study showed that mRNA expression lev-
els of ASC, caspase-1, GSDMD, IL-1β and NF-κB were 
decreased significantly  in both the T.s crude protein 
and the vx-765 intervention groups (Fig.  7a). The pro-
tein levels of GSDMD-N, caspase-1 p20 and IL-1β were 
decreased in the T.s group, T.s crude protein group and 
vx-765 intervention group (Fig.  7b–c). This illustrated 
that both blockade of caspase-1-mediated pyroptosis and 
T.s intervention could ameliorate DSS-induced colitis in 
mice.

Discussion
Increasing evidence has suggested that helminths and 
their secreted products have therapeutic potential in the 
treatment of inflammatory diseases, including IBD [42]. 
Growing numbers of epidemiological investigations in 
different regions of the world have found an inverse rela-
tionship between the prevalence of autoimmune diseases 
like IBD and parasitic infections [43]. Helminths indeed 
have the ability to protect against or alleviate numerous 
inflammatory conditions, such as IBD, allergic airway 
inflammation, type I diabetes and autoimmune encepha-
lomyelitis [44]. Therefore, helminth therapy has been an 
attractive autoimmune therapy approach.

T.s infection can activate the Th2 immune response, 
and cytokines of the Th2 subpopulation can induce 
unique immunological features such as eosinophilia, 
mastocytosis and IgE hypergammaglobulinemia [45]. 
A Th2-biased immune response is caused by T.s infec-
tion, characterized by Th2-associated cytokines, typically 
including IL-4, IL-5 and IL-13. In addition, T.s can regu-
late Th1 and Th2 responses by inducing regulatory T cells 
(Treg) or anti-inflammatory cytokines IL-10 and TGF-β 
[46]. Several studies have focused on the anti-inflamma-
tory property of T.s or their derived products in an IBD 

Fig. 4  T.s crude protein treatment downregulated the expression of pyroptosis-associated molecules in RAW264.7 cells. a T.s crude protein 
treatment downregulated mRNA expression levels of pyroptosis-associated molecules of NLRP3, caspase-1, GSDMD and NF-κB induced by LPS 
and ATP. b–c Western blot was used to detect the relative expression level of GSDMD-FL, GSDMD-N, caspase-1, caspase-1 p20, IL-1β, IL-1β p17 
and phosphorylated NF-κB (p65). All the results are presented as mean ± SD, and statistics symbols used are: *P < 0.05, **P < 0.01 ***P < 0.005, 
****P < 0.001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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model and revealed that the protective mechanism was 
related to Th2 cells by balancing Th1/Th2/Th17 popula-
tion [47, 48]. In this study, the levels of pro-inflamma-
tory cytokines, such as IL-6, were increased in the UC 
mouse intestinal tissues, and anti-inflammatory factors, 
such as IL-4, IL-10 and TGF-β, were obviously elevated 
in the T.s treatment group, consistent with the findings 
of other investigations [35, 49–51]. In general, IL-22 
plays a protective role in IBD, and although IL-22 lev-
els were elevated in DSS-induced UC mice, it may have 
been accompanied by regulation of the natural antago-
nist IL-22BP, thereby hindering the protective effect of 
IL-22. In addition, iNOS was significantly elevated in 
the DSS group, which may be related with the polariza-
tion of macrophages toward the M1 type in colitis. These 

results demonstrated that T.s intervention could regulate 
immune balance in DSS-induced colitis mice.

It is known that pyroptosis plays a crucial role in 
inflammation occurrence and the development of UC 
diseases. The over-activation of the NLRP3/caspase-1 
pathway is a key step of pyroptosis [52]. NLRP3 inflam-
masome activation requires two distinct signals; the first 
signal is NF-κB-mediated NLRP3, where pro-IL-1β and 
IL-18 expression is regulated by inflammatory stimuli 
such as TLR4 agonists. The second signal is the assembly 
of NLRP3 inflammasome, caspase-1 activation and IL-1β 
and IL-18 secretion [53, 54]. In our study, the transcrip-
tion level of NF-κB (p65) was significantly increased in 
the UC mouse intestinal tissue and in  vitro, consistent 
with the results reported by Chen et  al. [55], revealing 

Fig. 5  T.s crude protein treatment downregulated the expression of pyroptosis-associated molecules in MODE-K cells. a Western blot detected 
the relative expression levels of GSDMD-FL, GSDMD-N, caspase-1, caspase-1 p20, IL-1β, IL-1β p17 and phosphorylated NF-κB (p65). b Grayscale scan 
values for the results obtained from western blot analysis. All results are presented as mean ± SD, and statistics symbols used are: *P < 0.05, **P < 0.01, 
***P < 0.005, ****P < 0.001
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that NF-κB pathway plays a profound regulatory role in 
the pathogenesis of colitis and NLRP3 activation could 
rely on NF-κB pathway.

It has been demonstrated that NLRP3 inflamma-
some activation leads to GSDMD cleavage activation 
and IL-1β release in response to caspase1 activation 
in a variety of cell types, including neutrophils, mac-
rophages, dendritic cells and human monocytes [56, 
57]. NLRP3 inflammasome activation leads to auto-
crine IL-1β signaling to propagate and amplify the 
inflammatory response and inflammatory phenotype 
and increase the persistent IL-1β in intestinal lesions 

and mucosal cells from IBD patients [58]. In the pre-
sent study, the protein levels of active caspase-1 
(caspase p20), NLRP3, IL-1β and IL-1β p17 were sig-
nificantly increased in the UC mouse intestinal tissue 
and MODE-K, RAW264.7 cells treated with LPS and 
ATP in vitro, and T.s or T.s crude protein intervention 
significantly suppressed accumulation of the NLRP3 
inflammasome and activation of caspase-1 pathway. 
However, there is no statistical difference in the mRNA 
level of caspase-1, suggesting that T.s intervention did 
not have an effect on the transcription of caspase-1. 
Additionally, the pyroptosis effector of N-terminus 

Fig. 6  Pyroptosis inhibitor vx-765 relieved DSS-induced colitis. a The body weight changes in DSS-induced colitis after pyroptosis inhibitor 
belnacasan (vx-765) and pyroptosis agonist nigericin (NSC) interventions. b Colonic length in all the experimental groups were measured 
and recorded. c Histopathological changes in colonic samples were examined by H&E staining and were measured by evaluating its therapeutic 
effect. d Cytokines of IL-6, TGF-β, IL-4 and IL-10 were measured. All the results are presented as mean ± SD, and statistics symbols used are: *P < 0.05, 
**P < 0.01, ***P < 0.005, ****P < 0.001
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of GSDMD (GSDMD-N) was elevated in a UC mouse 
model and cell model in  vitro and decreased after 
T.s or T.s crude protein treatment. Therefore, it was 
believed that pyroptosis plays an important role in 
the progression of UC and could be suppressed by 
T.s intervention. In addition, the GSDMD and oxida-
tive stress-related molecule iNOS were significantly 
elevated in the UC mice, consistent with the previous 
study [59].

In addition, the pathological severity of DSS-induced 
UC mice was alleviated by caspase-1 inhibitor vx-765 
intervention. In addition, the mRNA and protein lev-
els of key pyroptosis-related molecules including cas-
pase-1, GSDMD and IL-1β of UC mice in the vx-765 
treatment group and the T.s treatment group were sig-
nificantly downregulated compared with those in the 
DSS group. In summary, our data indicated that the 
protective effect on DSS-induced UC by T.s interven-
tion was achieved through the inhibition of GSDMD-
mediated pyroptosis.

Conclusions
This study showed that T.s could alleviate the patho-
logical severity UC via GSDMD-mediated pyroptosis 
and provides new insight into the mechanism study and 
application of helminths in treating colitis. Our results 
help to better understand the mechanisms involved in 
the inverse correlation between parasitic helminth infec-
tion and incidence of immune-mediated inflammatory 
diseases including IBD.
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